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Abstract

Background: L-carnitine (LC) is used as a supplement by recreationally-active, competitive and highly trained
athletes. This systematic review aims to evaluate the effect of prolonged LC supplementation on metabolism and
metabolic modifications.

Methods: A literature search was conducted in the MEDLINE (via PubMed) and Web of Science databases from the
inception up February 2020. Eligibility criteria included studies on healthy human subjects, treated for at least 12
weeks with LC administered orally, with no drugs or any other multi-ingredient supplements co-ingestion.

Results: The initial search retrieved 1024 articles, and a total of 11 studies were finally included after applying
inclusion and exclusion criteria. All the selected studies were conducted with healthy human subjects, with
supplemented dose ranging from 1 g to 4 g per day for either 12 or 24 weeks. LC supplementation, in combination
with carbohydrates (CHO) effectively elevated total carnitine content in skeletal muscle. Twenty-four-weeks of LC
supplementation did not affect muscle strength in healthy aged women, but significantly increased muscle mass,
improved physical effort tolerance and cognitive function in centenarians. LC supplementation was also noted to
induce an increase of fasting plasma trimethylamine-N-oxide (TMAO) levels, which was not associated with
modification of determined inflammatory nor oxidative stress markers.

Conclusion: Prolonged LC supplementation in specific conditions may affect physical performance. On the other hand,
LC supplementation elevates fasting plasma TMAO, compound supposed to be pro-atherogenic. Therefore, additional
studies focusing on long-term supplementation and its longitudinal effect on the cardiovascular system are needed.

Keywords: Insulin-like growth factor-1, Protein kinase B, Mammalian target of rapamycin, Forkhead box O, MuRF-1,
Atrogin-1, Trimethylamine-N-oxide

Background
The main function of L-carnitine (LC) is the transport of
long-chain fatty acids into the mitochondrial matrix for
their conversion in energy, via β-oxidation process [1].
Moreover, LC by the reaction with acetyl-CoA and main-
taining the acetyl-CoA/CoA ratio in the cell regulates
pyruvate dehydrogenase activity [2]. LC also plays an im-
portant role in the regulation of metabolic pathways in-
volved in skeletal muscle protein balance: proteolysis and

protein synthesis [3]. Furthermore, LC acts as anti-oxidant
and anti-inflammatory compound [3]; thus, it may attenu-
ate the exercise-induced muscle damage.
The opinion that LC supplementation does not change

metabolism is based mostly on short-term supplementa-
tion protocols [4]. Recent studies demonstrate that pro-
longed supplementation, especially in combination with
carbohydrates (CHO), may increase muscle total carni-
tine (TC) content in skeletal muscle [5–7]. Therefore,
LC supplementation in specific conditions may affect
physical performance. On the other hand, LC has been
proposed as the red meat nutrient responsible for ath-
erosclerosis promotion [8]. As a potential link between
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red meat consumption and the increasing risk of cardio-
vascular disease, trimethylamine-N-oxide (TMAO) has
been indicated [8]. Since LC is still used by the athletes
[9, 10], the aim of this systematic review is to evaluate
the effect of prolonged LC supplementation on metabol-
ism/metabolic changes in healthy human subjects.

Methods
Eligibility criteria
The PICOS strategy was defined as follows: “P” (partici-
pants) human subjects, “I” (interventions) oral LC treat-
ment, “C” (comparisons) between supplementation and
placebo, supplementation and control, or pre- and post-
supplementation, “O” (outcomes) muscle variables, and
“S” (study design) randomized controlled trials, non-
randomized controlled trials, non-randomized non-
controlled trials.
Studies with the following criteria were excluded: de-

scribed in languages other than English, articles without
full-text availability, reviews and case reports. Subse-
quently, the following eligibility criteria were applied: a)
healthy human subjects; b) supplementation at least for
12 weeks; c) oral LC administration; d) no drugs co-
ingestion; e) no multi-ingredients supplementation.

Information sources and search
The literature was explored using the MEDLINE (via
PubMed) and Web of Science databases, including all ar-
ticles published from the inception up February 2020.
The search was conducted using the terms: “carnitine
supplementation” or “carnitine treatment” in combin-
ation with “exercise”, “training”, “athletic performance”,
“muscle strength”, “muscle fatigue”, “muscle damage”,
“muscle recovery”, “muscle synthesis” or “proteolysis”.

Study selection
Firstly, studies were assessed by title verification between
databases (duplicates were removed). The second assess-
ment performed by abstracts analysis, excluded studies
in a language other than English, studies with lack of full
text, reviews, case reports, animal studies and in-vitro
studies. The last step was performed by analysis of full
manuscripts based on the described above eligibility
criteria.

Data collection process
The following information was compiled for each study:
authors, year of publication, type of study, length of sup-
plementation, a dose of supplementation and main ef-
fect. Lastly, the thematic analysis was carried out, to
synthesize and interpret all the data that appeared from
the included publications. The process of selecting pa-
pers, data collection as well as the quality assessment
was performed independently by two authors (A.S.,

G.R.), and all disagreements were resolved by the discus-
sion with the third author (R.O).

Results
Study selection
By the above-described search strategy, 1295 publica-
tions were identified. After the first selection, adjusted
by duplicates, persisted 1024 articles. Of these, 794 were
excluded after abstracts screening and identified articles
in languages other than English, lack of full text or being
review articles, case reports, animal or in-vitro studies.
The full texts of 230 articles were screened by eligibility
criteria. Finally, to the qualitative analysis were accepted
11 studies performed on healthy human subjects, treated
for at least 12 weeks with LC administered orally, with
no drugs or any other multi-ingredient supplements co-
ingestion (Fig. 1).

Description of the included studies
Table 1 provides details and results of the 11 studies
reviewed. Selected studies were published between 2002
and 2020. In the selected studies, participants were sup-
plemented in a dose ranging from 1 g to 4,5 g per day
for either 12 or 24 weeks, mostly by L-carnitine-L-tar-
trate (LCLT). In three studies, supplementations were
combined with carbohydrates (CHO) [5–7], and in one
with L-leucine [18].
Muscle carnitine content was not affected following 12

weeks of LC supplementation alone [11, 12]. On the
other hand, LC supplementation in combination with
CHO effectively elevated muscle TC after 12 [6] and 24
weeks [5]. Moreover, 12 weeks of supplementation alone
[13], or in combination with CHO [6] promote the
expression of the genes related to fatty acids and
carnitine metabolism.
Twenty-four-weeks of LC supplementation alone did

not affect muscle strength in healthy aged women [15],
but significantly increased muscle mass, improved phys-
ical effort tolerance and cognitive function in centenar-
ians [14].
In two studied groups of healthy aged woman, LC sup-

plementation alone [16, 17], or in combination with L-
leucine [18], induced an increase of fasting plasma
TMAO levels. However, higher TMAO was not associ-
ated with determined inflammatory [16] nor oxidative
stress [17] markers. Moreover, despite elevated TMAO,
LC supplementation together with resistance training in-
duced positive changes in mitochondrial DNA methyla-
tion of platelets [18].

Discussion
The present findings have been debated in the six separ-
ate paragraphs, and for a better picture of LC supple-
mentation, other studies were also disputed.
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“Fat burner”
It has been assumed that LC supplementation, by in-
creasing muscle carnitine content, optimizes fat oxida-
tion and consequently reduces its availability for storage
[19]. Nevertheless, the belief that carnitine is a slimming
agent has been negated in the middle of 90s [20]. Direct
measurements of carnitine in skeletal muscles failed to
show any elevation in the muscle carnitine concentration
following 14 days of 4 g/day [21], or 6 g/day [22] LC in-
gestion. These findings implied that LC supplementation
was not able to increase fat oxidation and improve exer-
cise performance by the proposed mechanism. Indeed,
many original investigations, summarized in later review
[4], indicated that LC supplementation lasting up to 4
weeks, neither increase fat oxidation nor improve per-
formance during prolonged exercises.
Since LC concentration in skeletal muscles is higher

than that of blood plasma, active uptake of carnitine
must take place [23]. Stephens et al. [24] noted that 5 h
steady-state hypercarnitinemia (~ 10-fold elevation of
plasma carnitine) induced by the intravenous LC infu-
sion does not affect skeletal muscle TC content. On the
other hand, similar intervention in combination with
controlled hyperinsulinemia (~ 150mIU/L) elevates TC
in skeletal muscle by ~ 15% [24, 25]. Moreover, higher
serum insulin maintained by the consumption of simple
sugars resulted in augmented LC retention in healthy
human subjects supplemented by LC for 2 weeks [26].
Based on these results, Authors suggested that oral in-
gestion of LC, combined with CHO for activation carni-
tine transport into the muscles, should take ~ 100 days
to increase muscle carnitine content by ~ 10% [26]. This

assumption has been confirmed in later studies [5–7].
These carefully conducted studies clearly showed that
prolonged procedure (for ≥12 weeks) of a daily LC and
CHO ingestion induced a raise of skeletal muscle TC
levels [5–7], affecting exercise metabolism [5], improving
performance [5] and energy expenditure [6], without al-
tering body composition [6]. The lack of body fat stores
loss may be explained by the 18% increase in body fat
mass associated with CHO supplementation alone, noted
in the control group [6].
Nevertheless, 12 weeks of LC supplementation 2 g/day

applied without CHO, elevated muscle TC only in vege-
tarian but not in omnivores [12]. Neither exercise me-
tabolism nor muscle metabolites were modified by
augmented TC in vegetarian [12].

Skeletal muscle protein balance regulation
Skeletal muscle mass depends on the rates of protein
synthesis and degradation. Elevated protein synthesis
and attenuated proteolysis are observed during muscle
hypertrophy. Both of these processes are mainly regu-
lated by the signaling pathway: insulin-like growth
factor-1 (IGF-1) – phosphoinositide-3-kinase (PI3K) –
protein kinase B (Akt) – mammalian target of rapamycin
(mTOR). The activation of mTOR leads to phosphoryl-
ation and activation of S6 kinases (S6Ks) and hyperpho-
sphorylation of 4E-binding proteins (4E-BPs), resulting
in the acceleration of protein synthesis. At the same
time, Akt phosphorylates and inactivates forkhead box
O (FoxO), thereby inhibit the responsible for proteolysis
ubiquitin ligases: muscle-specific RING finger-1 (MuRF-

Fig. 1 Flowchart on the search and selection of articles included in the review
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Table 1 Summary and results of the studies reviewed examining the LC supplementation

Studies Participants characteristics Study design Supplementation dose and period Main effect

[11] Moderately trained male
subjects (n = 7)
age 23–25

NRNC 4 g LC/day
for 3 months

Increase of TC plasma concentration after the
supplementation;
No change in muscle TC concentration, mitochondrial
enzymes activity, physical performance and muscle fiber
composition

[12] Male vegetarians (n = 16)
and omnivores (C) (n = 8)
age 18–40

NRC 2 g LCLT /day
for 12 weeks

Increase of TC plasma concentration after the
supplementation and muscle TC concentration only in
vegetarians;
No change in physical performance and muscle
metabolism either in omnivores or vegetarians.

[13] Middle aged untrained male
subjects
(S n = 12; P n = 12)
age not reported
(both groups involved in
endurance training; 3x/
week)

RC 2 g LCLT /day
for 12 weeks

Increase of TC plasma concentration after the
supplementation;
Plasma triacylglycerols and free fatty acids not affected
by training or supplementation;
Training resulted in an increase in the mRNA expression
of genes coding proteins involved in long chain fatty
acid transport in white blood cells, LC supplementation
enhanced the effect on gene expression

[6] Non-vegetarian, male
recreational athletes
(S n = 6; P n = 6)
age 28 ± 2 (S); 25 ± 2 (P)

RC 2 g LCLT + 80 g CHO /day
for 12 weeks

Increase in muscle TC concentration after LC
supplementation;
Upregulation of seventy-three genes relating to fuel me-
tabolism in LC vs. control;
Higher exercise energy expenditure after LC
supplementation;
No change in carnitine palmitolytransferase 1 activity;
Body mass and whole-body fat mass increased in control,
but did not change in LC supplemented

[5] Non-smoking, non-
vegetarian recreational
athletes
(S n = 7; P n = 7)
age 26 ± 2

RC 2 g LCLT + 80 g CHO /day
for 24 weeks

Increase in muscle TC concentration after LC
supplementation;
Lower muscle glycogen utilization during low intensity
exercise, lower lactate production during high intensity
exercise, higher work output during a 30 min ‘all-out’
exercise performance test in LC supplemented group;

[7] Healthy, non-vegetarian, un-
trained males
(S n = 7; P n = 7)
age 23 ± 2
(both groups involved in
HIIT; 3x/week)

RC 2.25 g LCLT + 80 g CHO /day
for 24 weeks

Muscle TC concentration tend to increase after LC
supplementation (p = 0.06 vs. pre-supplementation);
Skeletal muscle adaptations to training not augmented
by elevated muscle carnitine availability;

[14] Centenarians
(S n = 27; P n = 27)
age 100–106

RC 2 g LC/day
for 24 weeks

Increase of TC plasma concentration after the
supplementation;
Fat mass reduction, muscle mass elevation, physical effort
tolerance and cognitive function improvement in LC
supplemented group

[15] Healthy women
(S n = 11; P n = 9)
age 65–70

RC 1.5 g LCLT /day
for 24 weeks

Increase of free carnitine plasma concentration after the
supplementation;
No changes in body composition, skeletal muscle
strength and IGF-1 after LC supplementation

[16] Healthy women
(S n = 11; P n = 9)
age 65–70

RC 1.5 g LCLT /day
for 24 weeks

Increase of plasma TMAO concentration after the
supplementation;
No changes in serum C-reactive protein, interleukin-6,
tumor necrosis factor-α, L-selectin, P-selectin, vascular cell
adhesion molecule-1, intercellular adhesion molecule-1
and lipid profile after LC supplementation

[17] Healthy women
(S n = 11; P n = 9)
age 65–70

RC 1.5 g LCLT /day
for 24 weeks

No changes in plasma GBB or serum ox-LDL, myeloperox-
idase, protein carbonyls, homocysteine, and uric acid
concentrations

[18] Healthy aged women
(S n = 12; P n = 13; C n = 12)
age 67 ± 3
(all groups involved in
resistance training 3x/week)

RC 1 g LCLT + 3 g L-leucine/day
for 24 weeks

Increase of plasma TMAO concentration after the
supplementation;
Increase of D-loop methylation in platelets of LC
supplemented

Groups: C control; S supplemented; P placebo; Study design: RC randomized controlled; NRC non-randomized controlled; NRNC non-randomized
non-controlled; LCLT L-carnitine-L-tartrate; HIIT high-intensity interval training
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1) and muscle atrophy F-box protein (atrogin-1), (for re-
view see [27–29]).
The association between LC supplementation and the

regulation of metabolic pathways involved in muscle pro-
tein balance have been shown in several animal studies
(Fig. 2) [30–35]. Four weeks of LC supplementation in rats
increased plasma IGF-1 concentration [33]. Elevated cir-
culating IGF-1 led to an activation of the IGF-1–PI3K–
Akt signalling pathway, causing augmented mTOR phos-
phorylation and higher phospho-FoxO/total FoxO ratio in
skeletal muscle of LC supplemented rats [33]. FoxO in-
activation attenuated MURF-1 expression in quadriceps
femoris muscle of supplemented rats (compared to con-
trol) [33]. Moreover, LC administrated for 2 weeks sup-
presses atrogin-1 messenger RNA (mRNA) level in
suspended rats’ hindlimb [35], and only 7 days of LC ad-
ministration downregulates MuRF-1 and atrogin-1
mRNAs reducing muscle wasting in a rat model of cancer
cachexia [32]. All these findings together might suggest
that LC supplementation protect muscle from atrophy, es-
pecially in pathophysiological conditions.
In fact, administration of acetyl-L-carnitine 3 g/day for

5 months in HIV-seropositive patients induced ten-fold
increase in serum IGF-1 concentration [36]. Conversely,
neither 3 weeks LC supplementation in healthy, recre-
ationally weight-trained men [37], nor 24 weeks LC sup-
plementation in aged women [15] did not affect
circulating IGF-1 level concentration. Various effects
might be due to different IGF-1 levels; significantly lower

in the HIV-seropositive patients than in healthy subjects
[38]. Additionally, 8 weeks of LC supplementation in
healthy older subjects, did not change total and phos-
phorylated mTOR, S6K and 4E-BP proteins level of vas-
tus lateralis muscle [39]. It must be highlighted that rat
skeletal muscle TC increases ~ 50–70% following 4
weeks of LC supplementation [33, 34], whereas compar-
able elevation has never been observed in human stud-
ies, even after 24 weeks of supplementation [5, 7].

Body composition
These findings altogether suggest that prolonged LC
supplementation might affect body composition in spe-
cific conditions.

Obesity
A recent meta-analysis, summarized studies focused
on LC supplementation for a prolonged time (median
3 months) [40]. Pooled results demonstrated a signifi-
cant reduction in weight following LC supplementa-
tion, but the subgroups analysis revealed no
significant effect of LC on body weight in subjects
with body mass index (BMI) below 25 kg/m2. There-
fore, authors suggested that LC supplementation may
be effective in obese and overweight subjects. Surpris-
ingly, intervention longer than 24 weeks showed no
significant effect on BMI [40].

Fig. 2 The association between LC supplementation and the regulation of metabolic pathways involved in muscle protein balance. L-carnitine (LC);
insulin-like growth factor-1 (IGF-1); phosphoinositide-3-kinase (PI3K); protein kinase B (Akt); mammalian target of rapamycin (mTOR); forkhead box O (FoxO);

muscle-specific RING finger-1 (MuRF-1); muscle atrophy F-box (atrogin-1); increase ( ); decrease ( ); activation ( ); inactivation ( )
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Training
It has been assumed that a combination of LC supplemen-
tation with increased energy expenditure may positively
affect body composition. However, either with aerobic [41,
42] or resistance [43] training, LC supplementation has
not achieved successful endpoint. Six weeks of endurance
training (five times per week, 40min on a bicycle ergom-
eter at 60% maximal oxygen uptake) together with LC
supplementation (4 g/day) does not induce a positive ef-
fect on fat metabolism in healthy male subjects (% body
fat 17.9 ± 2.3 at the beginning of the study) [41]. Similarly,
lack of LC effect has been reported in obese women [42].
Eight weeks of supplementation (2 g/day) combined with
aerobic training (3 sessions a week) had no significant ef-
fects on body weight, BMI and daily dietary intake in
obese women [42].
In the recent study, LC supplementation 2 g/day has

been applied in combination with a resistance training
program (4 days/week) to healthy men (age range 18–40
y.o.), for 9 weeks [43]. Body composition, determined by
dual energy X-ray absorptiometry, indicated no signifi-
cant effect in fat mass and fat-free mass due to supple-
mentation. Moreover, LC administration did not
influence bench press results. The number of leg press
repetitions and the leg press third set lifting volume in-
creased in the LC group compared to the placebo group
[43]. Different LC effect in the limbs may be associated
with the higher rates of glycogenolysis during arm exer-
cise at the same relative intensity as leg exercise [44].

Sarcopenia
Aged people have accelerated protein catabolism, which
is associated with muscle wasting [45]. LC could increase
the amount of protein retention by inhibition of the pro-
teolytic pathway. Six months of LC supplementation
augmented fat free mass and reduced total body fat mass
in centenarians [14]. Such effect was not observed in
elder women (age range 65–70 y.o.) after a similar
period of supplementation [15]. The effectiveness of LC
supplementation may result from the age-wise distribu-
tion of sarcopenia. The prevalence of sarcopenia in-
creased steeply with age, reaching 31.6% in women and
17.4% in men older than 80 years [46]. In subjects below
70 years presarcopenia, but not sarcopenia symptoms
were noted [46].

Oxidative imbalance and muscle soreness
Muscle damage may occur during exercise, especially ec-
centric exercise. In the clearance of damaged tissues as-
sist free radicals produced by neutrophils. Therefore,
among other responses to exercise, neutrophils are re-
leased into the circulation. While neutrophil-derived re-
active oxygen species (ROS) play an important role in
breaking down damaged fragments of the muscle tissue,

ROS produced in excess may also contribute to oxidative
stress (for review see [47, 48].
Based on the assumption that LC may provide cell

membranes protection against oxidative stress [49], it
has been hypothesized that LC supplementation would
mitigate exercise-induced muscle damage and improve
post-exercise recovery. Since plasma LC elevates follow-
ing 2 weeks of supplementation [21, 22], short protocols
of supplementation may be considered as effective in at-
tenuating post-exercise muscle soreness. The findings
indicated that 3 weeks of LC supplementation, in the
amount 2-3 g/day, effectively alleviated pain [50–53]. It
has been shown, through magnetic resonance imaging
technique that muscle disruption after strenuous exer-
cise was reduced by LC supplementation [37, 51]. This
effect was accompanied by a significant reduction in re-
leased cytosolic proteins such as myoglobin and creatine
kinase [50, 52, 53] as well as attenuation in plasma
marker of oxidative stress - malondialdehyde [51, 53,
54]. Furthermore, 9 weeks of LC supplementation in
conjunction with resistance training revealed a signifi-
cant increase of circulating total antioxidant capacity
and glutathione peroxidase activity and decrease in mal-
ondialdehyde concentration [43].

Risks of TMAO
In 1984 Rebouche et al. [55], showed that rats, orally re-
ceiving radiolabeled LC, metabolized it to γ-
butyrobetaine (up to 31% of the administered dose,
present primary in feces) and TMAO (up to 23% of the
administered dose, present primary in urine). On the
contrary, these metabolites were not produced by the
rats receiving the isotope intravenously and germ-free
rats receiving the tracer orally, suggesting that orally
ingested LC is in part degraded by the gut’s microorgan-
isms [55]. Similar observations were noted in later hu-
man studies [56, 57], with the peak serum TMAO
observed within hours following oral administration of
the tracer [56]. Prolonged LC treatment elevates fasting
plasma TMAO [16–18, 58, 59]. Three months of oral
LC supplementation in healthy aged women induced
ten-fold increase of fasting plasma TMAO, and this level
remained elevated for the further 3 months of supple-
mentation [16]. Four months after cessation of LC sup-
plementation, plasma TMAO reached a pre-
supplementation concentration, which was stable for the
following 8 months [60].
In 2011 Wang et al. [61] suggested TMAO as a pro-

atherogenic factor. Since diets high in red meat have
been strongly related to heart disease and mortality [62],
LC has been proposed as the red meat nutrient respon-
sible for atherosclerosis promotion [8]. As a potential
link between red meat consumption and the increasing
risk of cardiovascular disease, TMAO has been indicated
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[8]. Numerous later studies have shown the association
between increased plasma TMAO levels with a higher
risk of cardiovascular events [63–66]. The recent meta-
analyses indicated that in patients with high TMAO
plasma level, the incidence of major adverse cardiovas-
cular events was significantly higher compared with pa-
tients with low TMAO levels [67], and that all-cause
mortality increased by 7.6% per each 10 μmol/L incre-
ment of TMAO [68].
Since red meat is particularly rich in LC [69], dietary

intervention in healthy adults, indicated a significant in-
crease in plasma and urine TMAO levels following 4
weeks of the red meat-enriched diet [70]. The rise of
plasma TMAO was on average three-fold compared with
white meat and non-meat diets [70]. Conversely, habit-
ual consumption of red, processed or white meat did not
affect plasma TMAO in German adult population [71].
Similarly, a minor increase in plasma TMAO was ob-
served following red meat and processed meat consump-
tion in European multi-center study [72].
In the previous century, the underlined function of

TMAO was the stabilization of proteins against various
environmental stress factors, including high hydrostatic
pressure [73]. TMAO was shown as widely distributed
in sea animals [74], with concentration in the tissue in-
creasing proportionally to the depth of the fishes natural
environment [75]. Consequently, fish and seafood nutri-
tional intake has a great impact on TMAO level in the
human body [76], significantly elevating also plasma
TMAO concentration [72]. Therefore, link between
plasma TMAO and the risk of cardiovascular disease [8]
seems like a paradox, since more fish in the diet reduces
this risk [77].
Not only dietary modification may affect TMAO

plasma levels. Due to TMAO excretion in urine [56, 57],
in chronic renal disease patients, TMAO elimination
from the body fails, causing elevation of its plasma con-
centration [78]. Therefore, higher plasma TMAO in
humans was suggested as a marker of kidney damage
[79]. It is worthy to note that cardiovascular disease and
kidney disease are closely interrelated [80] and dimin-
ished renal function is strongly associated with morbid-
ity and mortality in heart failure patients [81]. Moreover,
decreased TMAO urine excretion is associated with high
salt dietary intake, increasing plasma TMAO concentra-
tion [82].
The relation between TMAO and chronic disease

can be ambiguous, involving kidney function [79], dis-
turbed gut-blood barrier [83], or flavin-containing
monooxygenase 3 genotype [84]. Thus, whether
TMAO is an atherogenic factor responsible for the
development and progression of cardiovascular dis-
ease, or simply a marker of an underlined pathology,
remains unclear [85].

Adverse effects
Carnitine preparations administered orally can occasion-
ally cause heart-burn or dyspepsia [86]. No adverse events
associated with LC administration were recorded at a dose
6 g/day for 12months of supplementation in the patients
with acute anterior myocardial infarction [87], or at a dose
1.274 g/day (range 0.3–3 g/day) and duration 348 days
(range 93–744 days) in patients with liver cirrhosis [88].
Summarizing the risk associated with LC supplementation
Hathcock and Shao [89] indicated that intakes up to 2 g/
day are safe for chronic supplementation.
Although the optimal dose of LC supplementation for

myocardial infarction is 3 g/day in terms of all-cause
mortality [90], even lower LC intake elevates fasting
plasma TMAO [16–18, 58, 59], which is ten-fold higher
than control after 3 months of supplementation [16, 17].
It is worthy to mention that Bakalov et al. [91] analyzing
European Medicine Agency database of suspected ad-
verse drug reaction, noticed 143 cases regarding LC.

Strengths and limitations
The strength of this review is a focus on the period of
LC treatment, very important aspect often missed in
many articles dealing with this supplement. To date,
only few studies have examined the effects of LC supple-
mentation for at least 12 weeks, which is, on the other
hand, the main limitation of the current review. This
limitation is also magnified by the varied design of the
studies available including different supplementation
protocols and outcome measures. There is also a high
degree of heterogeneity among participants of the ana-
lyzed studies. Therefore, the results should be taken with
caution, and more research is required before definitive
recommendations.

Conclusions
Lasting for several years opinion that LC supplementation
does not change metabolism, especially exercise metabol-
ism, is based mostly on short-term supplementation pro-
tocols. Nevertheless, LC is still used by elite [9] and sub-
elite [10] athletes. Recent studies suggest that LC supple-
mentation may elevate muscle TC content; therefore,
modify muscle fuel metabolism and performance during
the exercise. Due to insulin-mediated LC transport to the
muscle, oral administration regimen should be combined
with CHO. Because of LC poor bioavailability, it is likely
that the supplementation protocol would take at least 3
months. Shorter period of supplementation may be effect-
ive in prevention of exercise-induced muscle damage, but
not metabolic changes.
On the other hand, it is also clear that prolonged LC

supplementation elevates fasting plasma TMAO [16–18,
58, 59], compound supposed to be pro-atherogenic [61].
Therefore, additional studies focusing on long-term
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supplementation and its longitudinal effect on the
TMAO metabolism and cardiovascular system are
needed.
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